Effect of nitrogen plasma on the surface of indium oxide nanowires.

نویسندگان

  • Keumyoung Seo
  • Seongmin Kim
  • David B Janes
  • Min Wook Jung
  • Ki-Seok An
  • Sanghyun Ju
چکیده

The change in the atomic nitrogen concentration on a semiconducting nanowire's surface and the consequent changes in the electrical characteristics of a nanowire transistor were investigated by exposing In(2)O(3) nanowires to nitrogen (N(2)) plasma. After plasma was applied at N(2) flow rates of 20, 40, and 70 sccm with a fixed source power of 50 W, the In(2)O(3) nanowire transistor exhibited changes in the threshold voltage (V(th)), subthreshold slope (SS), and on-current (I(on)). In particular, after treatment at an N(2) flow rate of 40 sccm, V(th) shifted positively by ~2.3 V, the SS improved by ~0.24 V/dec, and I(on) increased by ~0.8 μA on average. The changes are attributed to the combination of nitrogen ions produced by the plasma with oxygen vacancies or indium interstitials on the nanowires. Optimization of the plasma treatment conditions is expected to yield desirable device characteristics by a simple, nondestructive process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates

Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...

متن کامل

Chemical Vapor Deposition Synthesis of Novel Indium Oxide Nanostructures in Strongly Reducing Growth Ambient

The current study reports some interesting growth of novel In2O3 nanostructures using ambient-controlled chemical vapor deposition technique in the presence of a strongly reducing hydrazine ambient. The experiments are systematically carried out by keeping either of the carrier gas flow rate or the source temperature constant, and varying the other. For each of the depositions, the growth is st...

متن کامل

Synthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method

Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...

متن کامل

The study of humidity effect on carbon dioxide gas sensing properties of zinc oxide nanowires assisted by polyvinyl alcohol network at room temperature

In this research, Zinc oxide (ZnO) nanostructures were synthesized by low cost hydrothermal method. The grown ZnO nanostructures had a dispersed distribution with nanowire morphology and the specific surface area of about 7 m2.gr-1 which they have crystalized in hexagonal wurtzite structure. ZnO nanowires/polyvinyl alcohol network (ZP) on the epoxy glass substrate with cu-interdigited electrods...

متن کامل

Increased short circuit current in organic photovoltaic using high-surface area electrode based on ZnO nanowires decorated with CdTe quantum dots.

A photosensitized high-surface area transparent electrode has been employed to increase the short circuit current of a photovoltaic device with a blend of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) as the active layer. This is achieved by directly growing ZnO nanowires on indium tin oxide (ITO) film via a physical vapor method. The nanowire surface is th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 23 43  شماره 

صفحات  -

تاریخ انتشار 2012